You can Log In or Sign Up to try out the site.

Evaluations


Actions: Export Results

Evaluation Batch #39 (PUBLIC)

Benchmark:
Quiroga2004 - Easy 2
Description:
vdZRVr <a href="http://jpovcfguyvoo.com/">jpovcfguyvoo</a>, [url=http://ediziojbgvat.com/]ediziojbgvat[/url], [link=http://duxuxwevcasc.com/]duxuxwevcasc[/link], http://rrcotkctnsqi.com/
Algorithm:
Wave_clus (2.0)
Author:
ffranke
Date Created:
Sept. 10, 2012

True positive: 85.45%

False positive: 0.41%

Benchmark:
Quiroga2004 - Easy 2
Trial:
Easy2_noise005
Task State:
Success
TOGGLE DETAILS

Evaluation Summary:

Detection Errors Classification Errors
False Positives False Negatives
Total Total Non-Overlaps Overlaps Total Non-Overlaps Overlaps
10 492 150 342 4 4 0

Evaluation Results:

GT Unit Found Unit Ground Truth Found Spikes of Unit False Positives False Negatives
(True Spikes) (True Positives) Other Spikes Noise Found by other Unit Not detected
Total N-O O Total N-O O N-O O FP N-O O N-O O
GT = Ground Truth, O = Overlaps, N-O = Non-Overlaps
00001 00002 1130 967 163 963 925 38 4 0 0 0 0 42 125
00002 00003 1113 956 157 927 892 35 0 0 0 4 0 60 122
00003 00001 1167 1006 161 1024 958 66 0 0 10 0 0 48 95

Evaluation Plots

For every neuron in the sorting a piece of data is cut around every of its spikes. This is done for every channel (for multielectrode data) individually. The plot shows all cut spike waveforms superimposed over each other (gray traces). Dashed lines indicate channel boundaries. Colored waveforms represent the average of all spike waveforms (the template) for each neuron.

All spike waveforms superimposed.

The projections of all spikes onto the first two principle components is shown. Colors indicate neuron identity. This plot gives an impression on how the clusters look like and how good their separation (in PCA space) is. To compute this plot principle component analysis (PCA) is run on all spike waveforms of the sorting. The projections of each waveform is computed on the first two principle components.

This is the same as the previous cluster plot but for PCs 3 and 4.

For each pair of neurons the projections of every spike of both neurons on the vector that connects the templates is shown. This plot is described in Pouzat et al. 2002 "Using noise signature to optimize spike-sorting and to assess neuronal classification quality" (fig. 3 and 6) but here, the noise covariance matrix is not taken into account. Colors indicate neuron identity. The plot gives an impression on how well each pair of clusters is separable. Note however, that the uploaded spike sorting was used to compute this plot, the true separability using the ground truth could be different.

The first second of the spike trains of the sorting are plotted. This plot can be used to see if the website interpreted the uploaded spike train file correctly. Also, if the spike sorter splitted one cluster incorrectly into two (e.g. due to waveform change over time) this is clearly visible in this plot.

True positive: 85.51%

False positive: 0.00%

Benchmark:
Quiroga2004 - Easy 2
Trial:
Easy2_noise01
Task State:
Success
TOGGLE DETAILS

Evaluation Summary:

Detection Errors Classification Errors
False Positives False Negatives
Total Total Non-Overlaps Overlaps Total Non-Overlaps Overlaps
0 510 174 336 0 0 0

Evaluation Results:

GT Unit Found Unit Ground Truth Found Spikes of Unit False Positives False Negatives
(True Spikes) (True Positives) Other Spikes Noise Found by other Unit Not detected
Total N-O O Total N-O O N-O O FP N-O O N-O O
GT = Ground Truth, O = Overlaps, N-O = Non-Overlaps
00001 00002 1160 991 169 989 933 56 0 0 0 0 0 58 113
00002 00003 1146 972 174 952 919 33 0 0 0 0 0 53 141
00003 00001 1214 1047 167 1069 984 85 0 0 0 0 0 63 82

Evaluation Plots

For every neuron in the sorting a piece of data is cut around every of its spikes. This is done for every channel (for multielectrode data) individually. The plot shows all cut spike waveforms superimposed over each other (gray traces). Dashed lines indicate channel boundaries. Colored waveforms represent the average of all spike waveforms (the template) for each neuron.

All spike waveforms superimposed.

The projections of all spikes onto the first two principle components is shown. Colors indicate neuron identity. This plot gives an impression on how the clusters look like and how good their separation (in PCA space) is. To compute this plot principle component analysis (PCA) is run on all spike waveforms of the sorting. The projections of each waveform is computed on the first two principle components.

This is the same as the previous cluster plot but for PCs 3 and 4.

For each pair of neurons the projections of every spike of both neurons on the vector that connects the templates is shown. This plot is described in Pouzat et al. 2002 "Using noise signature to optimize spike-sorting and to assess neuronal classification quality" (fig. 3 and 6) but here, the noise covariance matrix is not taken into account. Colors indicate neuron identity. The plot gives an impression on how well each pair of clusters is separable. Note however, that the uploaded spike sorting was used to compute this plot, the true separability using the ground truth could be different.

The first second of the spike trains of the sorting are plotted. This plot can be used to see if the website interpreted the uploaded spike train file correctly. Also, if the spike sorter splitted one cluster incorrectly into two (e.g. due to waveform change over time) this is clearly visible in this plot.

True positive: 86.46%

False positive: 2.67%

Benchmark:
Quiroga2004 - Easy 2
Trial:
Easy2_noise015
Task State:
Success
TOGGLE DETAILS

Evaluation Summary:

Detection Errors Classification Errors
False Positives False Negatives
Total Total Non-Overlaps Overlaps Total Non-Overlaps Overlaps
55 426 186 240 36 24 12

Evaluation Results:

GT Unit Found Unit Ground Truth Found Spikes of Unit False Positives False Negatives
(True Spikes) (True Positives) Other Spikes Noise Found by other Unit Not detected
Total N-O O Total N-O O N-O O FP N-O O N-O O
GT = Ground Truth, O = Overlaps, N-O = Non-Overlaps
00001 00001 1181 1026 155 1032 978 54 12 3 26 1 0 47 101
00002 00003 1098 965 133 931 891 40 3 2 0 20 10 54 83
00003 00002 1132 977 155 986 889 97 9 7 29 3 2 85 56

Evaluation Plots

For every neuron in the sorting a piece of data is cut around every of its spikes. This is done for every channel (for multielectrode data) individually. The plot shows all cut spike waveforms superimposed over each other (gray traces). Dashed lines indicate channel boundaries. Colored waveforms represent the average of all spike waveforms (the template) for each neuron.

All spike waveforms superimposed.

The projections of all spikes onto the first two principle components is shown. Colors indicate neuron identity. This plot gives an impression on how the clusters look like and how good their separation (in PCA space) is. To compute this plot principle component analysis (PCA) is run on all spike waveforms of the sorting. The projections of each waveform is computed on the first two principle components.

This is the same as the previous cluster plot but for PCs 3 and 4.

For each pair of neurons the projections of every spike of both neurons on the vector that connects the templates is shown. This plot is described in Pouzat et al. 2002 "Using noise signature to optimize spike-sorting and to assess neuronal classification quality" (fig. 3 and 6) but here, the noise covariance matrix is not taken into account. Colors indicate neuron identity. The plot gives an impression on how well each pair of clusters is separable. Note however, that the uploaded spike sorting was used to compute this plot, the true separability using the ground truth could be different.

The first second of the spike trains of the sorting are plotted. This plot can be used to see if the website interpreted the uploaded spike train file correctly. Also, if the spike sorter splitted one cluster incorrectly into two (e.g. due to waveform change over time) this is clearly visible in this plot.

True positive: 74.28%

False positive: 7.37%

Benchmark:
Quiroga2004 - Easy 2
Trial:
Easy2_noise02
Task State:
Success
TOGGLE DETAILS

Evaluation Summary:

Detection Errors Classification Errors
False Positives False Negatives
Total Total Non-Overlaps Overlaps Total Non-Overlaps Overlaps
148 795 528 267 112 94 18

Evaluation Results:

GT Unit Found Unit Ground Truth Found Spikes of Unit False Positives False Negatives
(True Spikes) (True Positives) Other Spikes Noise Found by other Unit Not detected
Total N-O O Total N-O O N-O O FP N-O O N-O O
GT = Ground Truth, O = Overlaps, N-O = Non-Overlaps
00001 00002 1186 1020 166 889 817 72 28 5 77 17 2 186 92
00002 00003 1188 1023 165 877 824 53 32 3 4 62 14 137 98
00003 00001 1152 995 157 853 775 78 34 10 67 15 2 205 77

Evaluation Plots

For every neuron in the sorting a piece of data is cut around every of its spikes. This is done for every channel (for multielectrode data) individually. The plot shows all cut spike waveforms superimposed over each other (gray traces). Dashed lines indicate channel boundaries. Colored waveforms represent the average of all spike waveforms (the template) for each neuron.

All spike waveforms superimposed.

The projections of all spikes onto the first two principle components is shown. Colors indicate neuron identity. This plot gives an impression on how the clusters look like and how good their separation (in PCA space) is. To compute this plot principle component analysis (PCA) is run on all spike waveforms of the sorting. The projections of each waveform is computed on the first two principle components.

This is the same as the previous cluster plot but for PCs 3 and 4.

For each pair of neurons the projections of every spike of both neurons on the vector that connects the templates is shown. This plot is described in Pouzat et al. 2002 "Using noise signature to optimize spike-sorting and to assess neuronal classification quality" (fig. 3 and 6) but here, the noise covariance matrix is not taken into account. Colors indicate neuron identity. The plot gives an impression on how well each pair of clusters is separable. Note however, that the uploaded spike sorting was used to compute this plot, the true separability using the ground truth could be different.

The first second of the spike trains of the sorting are plotted. This plot can be used to see if the website interpreted the uploaded spike train file correctly. Also, if the spike sorter splitted one cluster incorrectly into two (e.g. due to waveform change over time) this is clearly visible in this plot.